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Phase synchronization and suppression of chaos through intermittency
in forcing of an electrochemical oscillator

István Z. Kiss and John L. Hudson*
Department of Chemical Engineering, 102 Engineers’ Way, University of Virginia, Charlottesville, Virginia 22904-4741

~Received 26 April 2001; published 24 September 2001!

External periodic forcing was applied to a chaotic chemical oscillator in experiments on the electrodissolu-
tion of Ni in sulfuric acid solution. The amplitude and the frequency (V) of the forcing signal were varied in
a region aroundV5v0, wherev0 is the frequency of the unforced signal. Phase synchronization occurred with
increase in the amplitude of the forcing. ForV/v0 near 1 the signal remained chaotic after the transition to the
phase-locked state; forV/v0 somewhat farther from 1 the transition was to a periodic state via intermittency.
The experimental results are supported by numerical simulations using a general model for electrochemical
oscillations.
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I. INTRODUCTION

Synchronization in dynamical systems has received c
siderable interest in various fields of science involving phy
cal, chemical, and biological systems. Several types of s
chronization have been investigated including compl
@1–3#, phase@4#, lag @5#, and generalized@6# synchronization
and they can be treated in a unified framework@7#.

Periodic forcing of a chaotic system is a type of unidire
tional coupling that can produce phase synchronization@8#.
For phase synchronization only the locking of the phase
the chaotic and driving signals is significant, while no r
striction on the amplitudes is imposed. The determination
the phase~and amplitude! of a chaotic system is nontrivia
@9,10#; nevertheless, the different approaches allow the
scription of phase-locking phenomena in a reasonable w
Phase synchronization can be defined@9# as the appearanc
of a certain relation between the phase of a system and
of an external force, while the amplitude can remain chao
Phase synchronization has been experimentally verified
electronic circuits@11–14#, lasers@15–17#, plasma discharge
@18#, and biological systems@19,20#.

The study of chaotic systems under the action of a w
forcing signal has also been motivated by the developmen
resonant chaos control methods@21# or parametric desto
chastization@22,23#; the chaos is suppressed by a small h
monic perturbation of a parameter. Transitions from chao
to periodic behavior are often realized via intermitten
~type I @24# or type II @25#!. Parametric destochastization w
experimentally observed, e.g., in lasers@26–28#, discharge
plasma@29#, a periodically driven pendulum@30#, a micro-
wave driven spin-wave system@31#, a magnetoelastic beam
experiment@32#, and a homogeneous chemical reaction@33#.

Several electrochemical systems give rise to periodic c
rent oscillations under potentiostatic control@34#. Harmonic
forcing of periodic electrochemical oscillators resulted
transitions to chaos@35#, entrainment, spike generation, an
quasiperiodicity@36,37#, harmonic, subharmonic, and supe
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harmonic entrainment@38#. The chaotic electrodissolution o
copper was suppressed by periodic modulation of the cir
potential, and period-1 and period-2 oscillations were o
served@39#.

In this paper we present experimental results on the
fects of periodic forcing of a chaotic chemical oscillator, t
electrodissolution of Ni in sulfuric acid solution. The dynam
ics of the system are investigated over a range of forc
frequency and amplitude of the applied potential. The ph
of the chaotic current is compared to that of the forcin
Phase synchronization is shown to occur at low amplitu
of forcing. At higher amplitudes the transition through inte
mittency from chaotic to periodic motion is analyzed. T
experimental findings are supported by numerical studies
ing a general electrochemical model.

II. EXPERIMENTAL SETUP

A standard electrochemical cell consisting of a nick
working electrode~Aldrich, 99.99%1, 2 mm diameter!, a
Hg/Hg2SO4 /K2SO4 reference electrode, and a platinu
mesh counterelectrode was used. The electrode is embe
in epoxy and reaction takes place only at the end. The e
trode is held at the applied potential@Vapp(t)# with a poten-
tiostat~EG&G PAR 273!. The applied potential is the sum o
a constant potential (V0) and a perturbation@dV(t)
5A sin 2pVt# due to forcing. In all the experiments reporte
here V051.300 V ~vs Hg/Hg2SO4 /K2SO4). The forcing
signal was obtained from a HP-33120A function genera
A zero resistance ammeter was used to measure the cu
of the electrode and data acquisition was done at 200
Experiments were carried out in 4.5M H2SO4 solution at a
temperature of 11 °C. The reproducibility of the experime
was greatly enhanced by slowly stirring the solution with
magnetic stirrer resulting in the continuous removal of so
O2 formed during the experiments. Before each experim
the electrode was polished with a series of emery paper
polarized atV51.270 V ~region of periodic oscillations! to
provide a reproducible surface film~initial condition! for the
system.
d-
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FIG. 1. Chaotic oscillator
without forcing.~a! Reconstructed
attractor using time delay coordi
nates. ~b! Power spectrum.~c!
Hilbert transform of the condi-

tioned currentH„Ī (t)… vs condi-

tioned current Ī (t). ~d! Phase
f(t) ~solid! as a function oft. The
linear least-squares fit~dotted in
the inset, enlarged by a factor o
32! gives the frequency of the
chaotic oscillation, v0

51.325 Hz.
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III. EXPERIMENTAL RESULTS

A. Unforced chaotic oscillator

As reported in previous studies@40,41# the potentiostatic
dissolution of Ni exhibits chaotic dynamics if an appropria
series resistance (Rs) is added to the circuit. The recon
structed chaotic attractor from the current time series d
along with the corresponding power spectrum of the
forced system withRs5170V are shown in Figs. 1~a! and
1~b!, respectively.

The chaotic attractor is low dimensional; the informati
dimension is 2.2@40#. The presence of a sharp peak atf
51.323 Hz in the power spectrum implies strong phase
herence indicating the possibility of phase synchronizat
@8#.

B. Phase of the unforced system

We applied the analytical signal approach introduced
Gábor @42# to define the instantaneous phasef(t) and am-
plitudea(t) for the current time series dataI (t) ~other meth-
ods are also available; see@9# for details!. The analytical
signalz(t) is a complex function of time defined as

z~ t !5I ~ t !1 jH „I ~ t !…5a~ t !ej f(t), ~1!

where

H„I ~ t !…5p21E
2`

` I ~t!

t2t
dt ~2!

is the Hilbert transform ofI (t). With the phasef(t) known
from Eq. ~1! the frequency (v) of the chaotic signal is ob
tained as
04621
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v5 K df

dt L . ~3!

A fundamental requirement in the implementation of th
phase definition is the proper rotation of the analytical sig
z(t), that is, there should be a definite direction~either clock-
wise or counterclockwise! and a unique center of rotation
To meet this requirement the scalar can be decomposed
a small number of modes of proper rotation, and the phas
the original signal is a vector quantity corresponding to
phases of the different modes@43#. We applied the following
simplified version of the technique: two smooth splines co
necting all maxima and minima of the currentI (t), respec-
tively, were constructed and their average was subtrac
from the original signal. The resulting signal is the first mo
Ī (t), while the subtracted signal is the second mode of
original signal. TheH„Ī (t)… vs Ī (t) plot in Fig. 1~c! reveals
that the first mode has proper rotation. The frequency of
chaotic oscillations (v0) obtained from the linear least
squares fit tof(t) is v051.325 Hz@see Fig. 1~d!#. Note that
althoughf is monotonically increasing there are some slig
deviations from the fitted line@Fig. 1~d!, inset#. The devia-
tions arise because the instantaneous frequency@df(t)/dt#
depends in general on the amplitude. Theoretical analysi
this deviation can be found in the review by Pikovskyet al.
@9#.

The second mode of the current possessed an ampli
of 5% or less at a frequency about half that of the first mo
Therefore, we neglect the low-frequency, low-amplitude s
ond mode and study the phase synchronization of the
mode of the experimental signal. The conditioning proced
makes the phase analysis more robust against noise and
5-2
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PHASE SYNCHRONIZATION AND SUPPRESSION OF . . . PHYSICAL REVIEW E 64 046215
unavoidable low-frequency variations while keeping t
phase information of the original signal.

During the experiments the frequency of the unforced s
tem was repeatedly calculated and was found to bev0
51.3360.015 Hz. This deviation is probably due to expe
mental error, e.g., slow modification of the surface or2
evolution.

C. Forcing with VÄv0

For forcing experiments the phases of the chaotic@f(t)#
and the periodic driving@c(t)# signals were determined
Phase synchronization is defined@9# as the phase locking o
the signal and forcing:

unf~ t !2mc~ t !u,const, ~4!

wheren andm are integers. A weaker condition can also
given ~often referred to as frequency locking!

v5
m

n
V, ~5!

whereV is the frequency of the forcing. In this paper w
only haven5m51 sinceV/v>1.

Results are first presented with a forcing frequency ofV
51.32 Hz, which is within the experimental error ofv0. A
bifurcation diagram showing the minima of the oscillatio
as a function of the forcing amplitude is presented in Fig

At small amplitude the frequency of the oscillations loc
on V although the chaotic dynamics are only slightly a
fected. Even at small amplitudes the small variation ofv
(60.015 Hz) that had been observed in the unforced sys
diminishes to60.001 Hz. Therefore all the dynamical stat
shown in Fig. 2 have exactly the same frequency regard
of the characteristics of the state. With increasing amplitu
chaos→P4→P2→P1 transitions are observed. Note that t
lowest branch of the P4 oscillations is actually two poin

FIG. 2. Bifurcation diagram of the forced system showing t
minima of the oscillations (I min) as a function of the amplitude o
the forcing (A). The forcing frequencyV51.32 Hz is within the
experimental error ofv0. The chaotic~C!, period-4~P4!, period-2
~P2!, and period-1~P1! regions are also shown.
04621
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the values of those two minima are indistinguishable beca
of noise. The P4→P2 and P2→P1 transitions are invers
period-doubling bifurcations. The experimental data can
reveal the nature of the chaos→P4 transition. One possible
scenario might be an experimentally not resolvable peri
doubling sequence. However, we cannot exclude the po
bility of intermittency, which was observed withVÞv0 ~see
later!.

D. Forcing with VÅv0

When the forcing frequency is different fromv0 phase
locking occurs only forA>Ac , whereAc is the critical am-
plitude of the forcing signal. The phase differenceDf(t)
5f(t)2c(t) between the chaotic oscillations and the dr
ing signal is shown in Fig. 3 with increasingA for V
51.37 Hz, i.e., slightly higher thanv0.

At A53.3 mV @Fig. 3~a!# the forcing is too weak to affec
the phase characteristics of the chaotic behavior sign
cantly; Df decreases almost linearly with increasingt. In-
creasingA to 6.0 mV@Fig. 3~b!# still does not result in phase
synchronization; however,Df(t) exhibits a steplike varia-
tion consisting of almost horizontal phase-locked regions
vertical phase slips. The phenomenon of phase slipping
been observed and analyzed@44,45#. IncreasingA further to
7.3 mV @Fig. 3~c!# results in a state very close to phase sy
chronization: during the experiment only one phase slip
curs. At A58.6 mV @Fig. 3~d!# phase synchronization take
place: the chaotic signal takes on the frequency of the forc
(v5V) and the oscillations have an approximately fixe
nonzero (Df>2) phase difference. The phase synchroniz
chaotic attractor shown in Fig. 4 resembles the unforced
@Fig. 1~a!#.

Some aspects of phase synchronization can also be
in the power spectrum~insets in Fig. 3!. In the forced sys-
tems a new peak emerges close tof max51.32 Hz corre-
sponding to the frequency of the driving signal,V
51.37 Hz. With increasingA the new peak increases, and
phase synchronization@Fig. 3~d!# only this peak correspond
ing to the forcing can be seen.

Forcing experiments have been carried out for a range
forcing frequencies between 1.21 Hz and 1.45 Hz. TheV
2v vs V plots are presented in Fig. 5.

At A50 @without forcing, Fig. 5~a!# the points lie ap-
proximately on a line with a slope of unity; deviations a
due to the small variations ofv0. For a small amplitude@A
56.6 mV, Fig. 5~b!# phase synchronization occurs only fo
frequencies close tov0. As the amplitude is made larger, th
phase synchronized frequency region increases as ca
seen in Figs. 5~c! and 5~d!. At the smallest (V51.21 Hz)
and the largest (V51.45 Hz) frequencies phase synchron
zation occurs at larger values of forcing amplitudeA
>25 mV). Figure 6 shows the critical forcing amplitudeAc
at which phase synchronization is observed.

This figure is analogous to the phase diagram of
forced periodic oscillators showing the ‘‘Arnold tongues’’ o
frequency-locked regions@46,47#. The experimentally deter
mined synchronization tongue is approximately symme
aroundv0.
5-3
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FIG. 3. The phase difference
(Df) between the chaotic signa
and the forcing forV51.37 Hz.
~a! A53.3 mV. ~b! A56.0 mV.
~c! A57.3 mV. ~d! A58.6 mV.
The corresponding power spectr
are shown in the insets.
er

s
nd

d
s
o

nd

ne.
the
ase
in

n

d;

cal
ion-
and

ur-

e

The bifurcation diagrams at the different frequencies w
found to be similar to the one presented in Fig. 2 whereV
5v0. For 1.21 Hz<V<1.40 Hz the transitions are chao
→P4→P2→P1. ForV51.45 Hz no P4 state was seen a
the transitions were chaos→P2→P1. For larger forcing fre-
quencies (V>1.40 Hz) the transition into the phase-locke
region was qualitatively different; instead of a chaotic pha
synchronization there is an intermittent transition from cha
to a periodic state; the periodic state is P2 forV51.45 Hz
and P4 forV51.40 Hz. The time series of the current a
the phase difference are shown in Fig. 7 forV51.45 Hz.

FIG. 4. The phase synchronized chaotic attractor. The exp
mental conditions are given in Fig. 3~d!.
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Figures 7~a! and 7~b! are for a forcing amplitude (A
523.1 mV) just below critical.

The long P2 sequence is interrupted by short chaotic o
The periodic region is phase synchronized, while during
chaotic region there is a phase slip. The current and ph
difference are shown for amplitude close to the critical
Figs. 7~c! and 7~d! (A524.7 mV); phase synchronizatio
and period-2 oscillations are seen. ForV51.40 Hz, i.e.,
closer tov0, a similar intermittent transition was observe
however, the chaotic~not phase synchronized! state was
transformed to a P4~phase synchronized! state.

IV. NUMERICAL RESULTS

To support the experimental findings some numeri
simulations have been carried out with a general dimens
less electrochemical oscillator model proposed by Koper
Gaspard@48#:

de

dt
5

Vapp2e

Rs
2120k~e!u, ~6!

du

dt
521.25d0.5k~e!u12d~w2u!, ~7!

dw

dt
51.6d~223w1u!, ~8!

wheree is the double-layer potential,u and w are the con-
centrations of electroactive species in the so-called ‘‘s
face’’ and ‘‘diffusion’’ layers, d is the rotation rate of the
electrode characterizing the mass transfer, andk(e) is de-
fined as follows:

ri-
5-4



PHASE SYNCHRONIZATION AND SUPPRESSION OF . . . PHYSICAL REVIEW E 64 046215
FIG. 5. The frequency differ-
ence (V2v) as a function of the
forcing frequency (V) for ~a! A
50 mV, ~b! A56.6 mV, ~c! A
513.2 mV, and~d! A516.5 mV.
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k~e!52.5u210.01 exp@0.5~e230!#, ~9!

whereu is related to the surface coverage by some~inhibit-
ing! chemical species. The value ofu is approximated by a
sigmoidal function

u5H 1 for e<35

exp@20.5~e235!2# for e.35.
~10!

For an appropriate parameter setd50.119 13,Rs50.02 the
model exhibits a cascade of period-doubling bifurcatio
with increasingV0. The chaotic attractor reconstructed fro
the dimensionless current,I 5(Vapp2e)/Rs, is shown in Fig.
8~a! at V0536.7395.

There is a sharp peak in the power spectrum@Fig. 8~b!# at
f max50.475 Hz. We analyzed the phase of the simula
data as was done with the experiments except that no co
tioning was required. The frequency of the chaotic osci
tions was found to bev050.475, the same asf max. The
effect of periodic forcing @Vapp(t)5V01sin2pVt, V0
536.7395# on the dynamics is shown in Fig. 8~c! with V
5v0. The bifurcation diagram is qualitatively similar to th
obtained in the experiments in the low-forcing-amplitude
gion (A,531024) in which the phase synchronization o
curs. Above this period-2 region the behavior is more co
plicated than that for the experiments but eventua
doesgive period-1 oscillations through a series of perio
and chaotic states. Here we study phase synchronizatio
the low-amplitude-forcing region where there is qualitati
agreement between experiment and simulation.

Chaotic phase synchronization is shown in Fig. 8~d! at
V50.471. With increasingA phase slips occur more ofte
04621
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until complete phase synchronization takes place atAc
52.431025. Note that the phase difference is not zero d
ing phase synchronization but rather has a finite value a
the experimental findings.

The phase synchronized region in theA vs V parameter
space is shown in Fig. 9. In the frequency range of 0.4
<V<0.479 the tongue is symmetric~inset! around v0
50.475, while out of the region some asymmetry develo
In the symmetric range chaotic phase synchronization ta
place. Outside this range destochastization occurs via an
termittent phase synchronization. ForV,0.470, chaos
→P2 (0.41<V<0.460) and chaos→P4 transitions (V
50.465) occur. Similar transitions were found in the expe

FIG. 6. The phase-locked region inA-V parameter space.
5-5
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FIG. 7. Current time series an
phase differences,V51.45 Hz.
~a,b! Intermittent periodic and
chaotic oscillations with phase
slips. A523.1 mV, A,Acrit .
~c,d! Phase synchronized perio
state,A524.7.
m
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ments. ForV.0.479 transitions from chaos to P3, fro
chaos to P2, and from chaos to P1 took place at the crit
amplitude where phase synchronization occurs.

In Fig. 10 the chaos→P2 transition is shown forV
50.450. AtA52.031024 the long intermittent P2 sequenc
is interrupted by chaotic phase slips. With increasingA the
04621
al
average lengtĥt& of the phase synchronized periodic r
gions ~laminar phases! increases. It was found that̂t&
}(Ac2A)20.46 indicating type-I intermittency and a saddle
node bifurcation of periodic orbits@49# at Ac52.01531024.
Above Ac , e.g., atA52.231024 @Figs. 10~c! and 10~d!#,
phase synchronized P2 behavior occurs.
.
r

f

n
l

FIG. 8. Numerical simulations.
~a! The unforced chaotic attractor
~b! The corresponding powe
spectrum.~c! The bifurcation dia-
gram of the forced system (V
50.475) showing the maxima o
the oscillations (I max) as a func-
tion of the forcing amplitude (A).
~d! The phase difference betwee
the current and the forcing signa
(V50.471) as a function of time
with increasing amplitude~shown
next to the curves!.
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V. DISCUSSION

Phase synchronization was experimentally observed
ing periodic forcing of the chaotic electrodissolution of Ni
sulfuric acid solution. Unsynchronized, intermittently sy
chronized~with phase slips!, and phase synchronized stat
were observed with increases in the forcing amplitude. In
phase synchronized region the phases are locked with

FIG. 9. Numerical simulation. The phase-locked region of
forced model in the forcing frequency (V) – forcing amplitude~A!
parameter space. The inset shows the magnified region aroun
frequency of the unforced system (v050.475).
04621
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zero phase difference. Phase differences can occur in e
trochemistry due to double-layer charging~capacitive imped-
ance! and transport effects~Warburg impedance! @50#. These
are routinely investigated with periodic forcing of a stea
state~impedance spectroscopy!.

The bifurcations responsible for phase synchronization
chaotic oscillators have been described theoretically@44#; the
role of phase locking of the unstable periodic orbits emb
ded in the chaotic attractor was emphasized. Phase loc
of periodic oscillators is known to take place through sadd
node bifurcations of periodic orbits@46,47#. In our experi-
ments when the forcing frequency was sufficiently remov
from v0 an intermittent transition took place resulting in
periodic phase synchronized state. The phase synchron
P2 ~P4! state goes through an inverse period-doubling bif
cation ~sequence! resulting in a phase-locked P1 state.

We have carried out numerical simulations of a model
a forced chaotic electrochemical oscillator to support the
perimental findings. Although the model captures only so
general features of an electrochemical oscillator, it w
found to be capable of describing the chaotic phase sync
nization and the intermittent transitions from chaotic to pe
odic behaviors. Numerical calculations imply type-I interm
tency, i.e., stable and unstable periodic orbits eme
through a saddle-node bifurcation. A related behavior w
observed in a driven Rayleigh oscillator@24#. Since the
model provides a general mechanism for electrochemical
cillators it is probable that similar transitions can be observ
in other electrochemical systems having a phase cohe
chaotic attractor. Such systems are the reduction of ind
~III ! ions on hanging mercury electrode@51# the electrodis-

the
-

d

FIG. 10. Current time series
and phase differences from nu
merical simulation (V51.45 Hz).
~a,b!. Intermittent periodic and
chaotic oscillations with phase
slips. A52.031024, A,Acrit .
~c,d! Phase synchronized perio
state,A52.231024.
5-7
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solution of copper in phosphoric acid@52# and acetic acid
electrolytes@53#.

The observed rich dynamics makes the system also
able for studying the effect of forcing on a population
chaotic oscillators@54#. In this case the forcing, by changin
dynamics of the individual elements, alters the collective
ev
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namics, and stable and intermittent clustering have b
shown to occur@55#.
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@43# T. Yalçinkaya and Y.C. Lai, Phys. Rev. Lett.79, 3885~1997!.
@44# A. Pikovsky, M. Zaks, M. Rosenblum, G. Osipov, and

Kurths, Chaos7, 680 ~1997!.
@45# E. Rosa, E. Ott, and M.H. Hess, Phys. Rev. Lett.80, 1642

~1998!.
@46# V.I. Arnold, Am. Math. Soc. Transl. Ser. 2;46, 213 ~1965!.
@47# E. Ott, Chaos in Dynamical Systems~Cambridge University

Press, Cambridge, 1993!.
@48# M.T.M. Koper and P. Gaspard, J. Chem. Phys.96, 7797

~1992!.
@49# P. Manneville and Y. Pomeau, Physica D1, 219 ~1980!.
@50# A.J. Bard and L.R. Faulkner,Electrochemical Methods: Fun

damentals and Applications ~John Wiley & Sons,
New York, 1980!.

@51# M.T.M. Koper and J.H. Sluyters, J. Electroanal. Chem.303, 65
~1991!.

@52# M. Schell and F.N. Albahadily, J. Chem. Phys.90, 822~1989!.
@53# H.D. Dewald, P. Parmananda, and R.W. Rollins, J. Elect

chem. Soc.140, 1969~1993!.
@54# W. Wang, I.Z. Kiss, and J.L. Hudson, Chaos10, 248 ~2000!.
@55# W. Wang, I.Z. Kiss, and J.L. Hudson, Phys. Rev. Lett.86,

4959 ~2001!.
5-8


